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Chapter 1
Hybrid Renewable Energy Systems
Overview

1.1 Introduction

Wind and photovoltaic sources are one of the cleaner forms of energy conversion
available. One of the advantages offered by the hybridization of different sources is
to provide sustainable electricity in areas not served by the conventional power grid.
They are very used in many applications, but due to their nonlinearity, hybrid
energy systems are proposed to overcome this problem with important improve-
ments [1–204]. In general, hybridization consists of combining several energy
sources and storage units within the same system in order to optimize the pro-
duction and energy management. In review papers, they can be found under the
following names: hybrid renewable energy systems (HRESs) or multi-source
multi-storage systems (MSMSSs).

1.2 Advantages and Disadvantages of an Hybrid System

Hybrid renewable energy systems (HRESs) are attractive configurations used for
different applications and especially in standalone power generation systems as
electrification, water pumping and telecommunications. The most advantages of
these systems are their simplicity to use and their independent from one energy
source, so they can be productive during the day the night. On the other side, the
disadvantage is that there are different sources and storage units, so the system is
more complex than a single-source system. In this case, an energy management
control is necessary to control the power flow, so the global system will be more
complex and of course higher cost [42, 62].
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1.3 Configuration of Hybrid System

The first and most basic decision that a power system designer is faced is what
architecture to be used. This decision will influence every other aspects of the
system design including the types and quantities of power converters that will be
needed. So two choices must be considered [42, 54]:

• Choice of power converters
• Choice of common bus type.

1.3.1 Choice of Common Bus Type

The different energy sources can been interconnected through a DC bus or through
an AC bus or through DC/AC bus [43, 55–62].

1.3.1.1 Architecture of DC Bus

In the hybrid system presented in Fig. 1.1, the power supplied by each source is
centralized on a DC bus. Thus, the energy conversion system to provide AC power

Fig. 1.1 Configuration of the hybrid system with DC bus
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at their first rectifier has to be converted then continuously. The generators are
connected in series with the inverter to power the load alternatives. The inverter
should supply the alternating loads from the DC bus and must follow the set point
for the amplitude and frequency. The batteries are sized to supply peak loads. The
advantage of this topology is the simplicity of operation, and the load demand is
satisfied without interruption even when the generators charge the short-term
storage units.

1.3.1.2 Architecture of AC Bus

In this topology, all components of the HPS are related to alternating loads, as
shown in Fig. 1.2. This configuration provides superior performance compared to
the previous configuration, since each converter can be synchronized with the
generator so that it can supply the load independently and simultaneously with
other converters. This provides flexibility for the energy sources which supply the
load demand. In the case of low load demand, all generators and storage systems
are stationary except, for example, the photovoltaic generator to cover the load
demand. However, during heavy load demands or during peak hours, generators
and storage units operate in parallel to cover the load demand. The realization of
this system is relatively complicated because of parallel operation, by

Fig. 1.2 Configuration of the hybrid system with AC bus
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synchronizing the output voltages with the charge voltages. This topology has
several advantages compared to the DC-coupled topology such as higher overall
efficiency, smaller sizes of the power conditioning unit while keeping a high level
of energy availability, and optimal operation of the diesel generator due to reducing
its operating time and consequently its maintenance cost.

1.3.1.3 Architecture of DC/AC Bus

The configuration of DC and AC buses is shown in Fig. 1.3. It has superior per-
formance compared to the previous configurations. In this case, renewable energy
and diesel generators can power a portion of the load directly to AC, which can
increase system performance and reduce power rating of the diesel generator and
the inverter. The diesel generator and the inverter can operate independently or in
parallel by synchronizing their output voltages. Converters located between two
buses (the rectifier and inverter) can be replaced by a bidirectional converter which,
in normal operation, performs the conversion DC/AC (inverter operation). When
there is a surplus of energy from the diesel generator, it can also charge batteries
(operating as a rectifier). The bidirectional inverter can supply the peak load when
the diesel generator is overloaded.

Fig. 1.3 Configuration of the hybrid system with AC bus and DC bus
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The advantages of this configuration are:

• The diesel generator and the inverter can operate independently or in parallel.
When the load level is low, one or the other can generate the necessary energy.
However, both sources can operate in parallel during peak load.

• The possibility of reducing the nominal power of the diesel generator and the
inverter without affecting the system’s ability to supply peak loads.

The disadvantages of this configuration are:

• The implementation of this system is relatively complicated because of the
parallel operation (the inverter should be able to operate autonomously and
operate with synchronization of the output voltages with output voltages of
diesel generator).

1.3.2 Choice of Converters

A power converter is a system for adapting the source of electrical energy to a given
receiver by converting it (Fig. 1.4).

DC  SOURCE DC LOAD

AC  SOURCE AC  SOURCE

DC/DC converter

AC/DC converter DC/AC converter

AC/AC converter

Fig. 1.4 Sources and loads supplied by various static converters
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1.4 Classifications of Hybrid Energy Systems

The power delivered by the hybrid system can vary from a few watts for domestic
applications up to a few megawatts for systems used in the electrification of small
islands. Thus, for hybrid systems with a power below 100 kW, the configuration
with AC and DC bus, with battery storage, is the most used. The storage system
uses a high number of batteries to be able to cover the average load for several days.
This type of hybrid system uses small renewable energy sources connected to the
DC bus. Another possibility is to convert the continuous power to an alternative one
by using inverters. Hybrid systems used for applications with very low power
(below 5 kW) supply generally DC loads (Table 1.1).

1.5 Different Combinations of Hybrid Systems

Mathematically, it can have 2 power n (2 ) combinations of hybrid systems. In the
following, the most used combinations of hybrid system are presented as follows
(Fig. 1.5).

Mathematically, it can have the following combinations with one storage
(Tables 1.2 and 1.3).

By combining just one element with another, there are about eighteen
alternatives.

And by considering multiple storages, it can obtain a multiplicity of configu-
rations (about seventy). Some of them have been cited in the literature, others not at
all, which may be impossible to do because of the complexity of some combina-
tions (Table 1.4).

The most important systems are presented, and references of the most cited
systems are given to have an overview.

The most used hybrid systems can be summarized as shown in Table 1.5.

Table 1.1 Classification of hybrid systems by power range

Hybrid system power Applications

Low power Autonomous systems: pumping water, telecommunication stations, …

Average power Micro-isolated systems: supplying village, rural…

Great power Large isolated systems, for example, islands
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Fig. 1.5 Representation of some used hybrid systems

Table 1.2 Different hybrid systems

PVG Batt FCs SCs WT FES DG HP

PVG

Batt x

FCs x x
SCs x x x
WT x x x x

FES x x x x x

DG x x x x x

HP x x x x x x x

Table 1.3 Different
alternatives with only two
components

1 PVG/Batt 10 WT/SCs

2 PVG/FCs 11 WT/FES

3 PVG/SCs 12 HP/FCs

4 PVG/WT 13 HP/SCs

5 PVG/DG 14 WT/HP

6 PVG/HP 15 HP/FES

7 WT/Batt 16 WT/DG

8 HP/Batt 17 HP/DG

9 WT/FCs 18 PV/FES
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Table 1.4 Different alternatives considering multiple storages

1 PVG/
Batt

2 PVG/WT/Batt 43 HP/FCs

3 PVG/WT/SCs 44 HP/SCs

4 PVG/WT/Batt/SCs 45 WT/HP

5 PVG/
FCs

6 PVG/FCs/Batt 46 HP/FES

7 PVG/FCs/SCs 47 WT/DG

8 PVG/FCs/Batt/SCs 48 HP/DG

9 PVG/
SCs

10 PVG/SCs/Batt 49 PVG/FES

11 PVG/
WT

12 PVG/WT/FES 50 PVG/FES/Batt

13 PVG/WT/FES/Batt 51 PVG/FES/FCs

14 PVG/WT/FES/SCs 52 PVG/FES/SCs

15 PVG/WT/FES/FCs 53 PVG/FES/Batt/FCs

16 PVG/WT/FES/Batt/FCs 54 PVG/FES/Batt/SCs

17 PVG/WT/FES/Batt/SCs 55 PVG/FES/FCs/SCs

18 PVG/WT/FES/FCs/SCs 56 PVG/FES/Batt/FCs/SCs

19 PVG/WT/FES/Batt/FCs/SCs 57 WT/Batt

20 PVG/WT/DG 58 HP/Batt

21 PVG/WT/DG/Batt 59 WT/FCs

22 PVG/WT/DG/FCs 60 WT/SCs

23 PVG/WT/DG/SCs 61 WT/FES

24 PVG/WT/DG/Batt/FCs 62 WT/FES/SCs

25 PVG/WT/DG/Batt/SCs 63 WT/FES/FCS

26 PVG/WT/DG/FCs/SCs 64 WT/FES/Batt

27 PVG/WT/DG/Batt/FCs/SCs 65 WT/FES/SCs/Batt

28 PVG/WT/DG/FES 66 WT/FES/SCs/FCs

29 PVG/WT/DG/FES/Batt 67 WT/FES/FCs/Batt

30 PVG/WT/DG/FES/FCs 68 WT/FES/SCs/Batt/FCs

31 PVG/WT/DG/FES/SCs 69 PVG/HP

32 PVG/WT/DG/FES/Batt/FCs 70 PVG/HP/Batt

33 PVG/WT/DG/FES/Batt/SCs 71 PVG/HP/Batt/FCs

34 PVG/WT/DG/FES/FCs/SCs 72 PVG/HP/Batt/FCs/WT

35 PVG/WT/DG/FES/Batt/FCs/
SCs

73 PVG/HP/Batt/FCs/WT/FES

5 PVG/
DG

36 PVG/DG/Batt 74 PVG/HP/Batt/FCs/WT/
FES/DG

37 PVG/DG/FCs

38 PVG/DG/SCS

39 PVG/DG/Batt/FCs

40 PVG/DG/Batt/SCs

41 PVG/DG/FCs/SCs

42 PVG/DG/Batt/FCs/SCs
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Table 1.5 Summary of the most used hybrid systems

Hybrid systems Some references

PVG/Batt [14, 15, 42, 76–88]

PVG/FCs [22, 54, 62, 10, 116, 117, 145]

PVG/FCs/Batt [30, 55, 52, 184, 185]

PVG/Wind [47, 65, 112, 113, 142]

PVG/Wind/Batt [123–127]

PVG/Wind/FES [193–195]

WT/FCs [1, 5, 23, 171, 178]

WT/FCs/Batt/SCs [196–198]

WT/FCs/Batt [182, 183]

PVG/FCs/DG [24, 26, 31, 33, 39, 51, 26, 52, 63, 51]

PVG/DG [19, 28, 32, 34, 37, 38, 40, 94, 95]

PVG/Batt/DG [4, 12, 25, 29, 41, 98–100]

PVG/WT/DG [96, 97, 128, 129]

PVG/WT/FCs/Batt [120, 188]

PVG/WT/FCs/DG [186, 190]

PVG/DG/FES [189, 199]

PVG/Batt/DG/FCs [2, 11, 2]

PVG/WT/Batt/DG [13, 13, 102, 111, 151]

PVG/WT/FCs [118, 119, 121, 122, 146]

PVG/HP/Batt [104, 130–132, 130]

PVG/Batt/SCs [103, 133–137]

PVG/WT/FCs [3, 6, 10, 16–18, 44, 48, 53, 59, 64]

PVG/HP [105, 106, 114, 179, 180]

PVG/DG/HP [27, 98, 147, 148]

PVG/DG/HP/FCs [187, 191]

WT/DG/Batt [140, 142, 170]

WT/HP [100, 101, 109, 181]

WT/Batt [68, 154, 162, 168, 174]

WT/HP/DG [192, 200, 201]

WT/PVG/HP [104, 107, 108, 110, 115, 149]

WT/DG [141, 153–158, 164, 176]

WT/PVG/HP/DG [147, 150]

WT/SCs [159, 169, 172, 173]

WT/FES [160, 161, 166, 167, 177]

WT/DG/FES [163, 165, 175]

PVG/WT/FCs/DG/UC [202]

PVG/WT/SCs/Batt [203, 204]

PVG/FCs/Batt/SCs [90, 93, 103]
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1.5.1 PV System with Battery Storage

In standalone PV applications, electrical power is required from the system during
night or hours of darkness [14, 15]. Thus, the storage must be added to the system.
Generally, batteries are used for energy storage (Fig. 1.6).

This system can supply DC and AC loads (Fig. 1.7) [42, 49–88].
It can be implemented under MATLAB/Simulink as shown in Fig. 1.8.
And the different subsystems are in Fig. 1.9.

1.5.2 PV System/Fuel Cells

The role of PV/FCs system is the production of electricity without interruption in
remote areas. It consists generally of a photovoltaic generator (PV), an alkaline
water electrolyzer, a storage gas tank and a proton exchange membrane fuel cell
(PEMFC) (Fig. 1.10) [22, 54].

Fig. 1.6 Photovoltaic system with battery storage

Fig. 1.7 Standalone PV system with battery storage powering DC and AC loads
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Fig. 1.8 PV/batteries under MATLAB/Simulink

Fig. 1.9 Different blocks of PV/battery system
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PV subsystem works as a primary source, converting solar irradiation into
electricity that is given to a DC bus (Fig. 1.11). The second working subsystem is
the electrolyzer which produces hydrogen and oxygen from water as a result of an
electrochemical process. When there is an excess of solar generation available, the
electrolyzer is turned on to begin producing hydrogen which is sent to a storage
tank. The produced hydrogen is used by the third working subsystem (the fuel cell
stack) which produces electrical energy to supply the DC bus [62, 10, 116,
117, 145].

Fig. 1.10 PV system with fuel cells

Fig. 1.11 Hybrid photovoltaic/fuel cell block diagram
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It can be implemented under MATLAB/Simulink as shown in Fig. 1.12.
The fuel cell model is shown in Fig. 1.13.

Fig. 1.12 PV/FC system

Fig. 1.13 Fuel cell model
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1.5.3 PV System/Fuel Cells with Battery Storage

In this system, PV subsystem always works as a primary source; then, the second
working subsystems are the battery storage and the electrolyzer which supplies the
fuel cells (Fig. 1.14) [30, 153–184].

The block diagram representing PV/FC system is given in Fig. 1.15 [43, 55–62].
It can be implemented under MATLAB/Simulink as shown in Fig. 1.16.

1.5.4 PV System/FC Multi-storage Batteries/
Super-Capacitors

In this system, it is added a multi-storage to the previous system (Fig. 1.15). It
consists of batteries and super-capacitors (Fig. 1.17).

The block diagram representing PV/FC system with multi-storage is given in
Fig. 1.18.

Fig. 1.14 PV/FC system with batteries storage
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Fig. 1.15 PV/FC system with battery storage block diagram

Fig. 1.16 PV/battery/FC system
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Fig. 1.17 PV/FC system multi-storage batteries/super-capacitors

Fig. 1.18 PV/FC system with multi-storage batteries/super-capacitor block diagram
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1.5.5 Hybrid Wind/Photovoltaic System

The advantage of this type of hybrid system depends on the wind, solar radiation
and the type of load. It consists of a photovoltaic subsystem, a DC/DC converter
and a wind turbine. The two energy sources are connected to a DC bus [47, 48, 112,
113, 143] (Fig. 1.19).

It can be implemented under MATLAB/Simulink as shown in Fig. 1.20.
The aerogenerator subsystem is modeled as shown in Fig. 1.21.
And the wind turbine model is shown in Fig. 1.22.

1.5.6 Hybrid Wind/Photovoltaic System with Battery Storage

Both energy sources are connected to a DC bus, and batteries are added as a storage
system [123–127] (Fig. 1.23).

It can be implemented under MATLAB/Simulink as shown in Fig. 1.24.

Fig. 1.19 Hybrid wind/photovoltaic system
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Fig. 1.20 PV/wind system

Fig. 1.21 Aerogenerator model
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1.5.7 Hybrid Wind/Photovoltaic System with
Flywheels Storage

Flywheels energy storage can also be used. FES works by accelerating a rotor
(flywheel) to a very high speed and maintaining the energy in the system as rota-
tional energy (Fig. 1.25) [193–195].

Fig. 1.22 Wind turbine model

Photovoltaic generators(PV)

Batteries

DC bus

Wind generators

Fig. 1.23 Hybrid wind/photovoltaic system with battery storage

1.5 Different Combinations of Hybrid Systems 19



Fig. 1.24 Wind/photovoltaic system with battery storage

Fig. 1.25 Hybrid wind/photovoltaic system with flywheel storage
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1.5.8 Wind Turbine System with Fuel Cells

The system consists of a wind generation system with an electrolyzer to generate
hydrogen from surplus wind and a fuel cell for storage. Wind generator turbine
provides electricity for electrolyzer, and the excess of energy can be send to gen-
erate hydrogen for storage and converted into electricity during peak times [1, 5, 23,
171–178] (Fig. 1.26).

1.5.9 Wind System/Fuel Cells with Battery Storage

Battery storage can be added to the previous system (Fig. 1.27) [182, 183].

1.5.10 Wind System/Fuel Cells with Hybrid Storage
Batteries/Super-Capacitors

In this system, it is added a multi-storage. It consists of batteries and super-
capacitors (Fig. 1.28) [196–198].

Fig. 1.26 Hybrid wind/photovoltaic system
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1.5.11 PV System with Diesel Generators

It is the most used hybrid system. It comprises a photovoltaic generator with a
diesel generator (Fig. 1.29) [19, 28, 32, 34, 37–40, 94, 95].

Fig. 1.27 Hybrid wind/fuel cell system with battery storage

Fig. 1.28 Hybrid wind/fuel cell system with hybrid storage
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1.5.12 PV System with Diesel Generators with Battery
Storage

Battery storage can be added to the previous system (Fig. 1.30) [4, 12, 25, 29,
41, 19, 98–100].

Fig. 1.29 Hybrid photovoltaic system/diesel generators

Fig. 1.30 Hybrid wind/photovoltaic system with battery storage
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1.5.13 PV System with Wind Turbine System and Diesel
Generators

Diesel generators are added as a backup system to PV/wind turbine system
(Fig. 1.31).

1.5.14 PV System with Wind Turbine and Diesel Generators
with Battery Storage

In this case, battery storage is added to the previous system (Fig. 1.32) [96, 97,
128, 129].

It can be implemented under MATLAB/Simulink as shown in Fig. 1.33.

1.6 Conclusion

This chapter has been devoted to hybrid wind systems. The different configurations
and the different combinations of hybrid wind systems have been presented and
described. Different synoptic schemes and models are also presented to show their
implementation under MATLAB/Simulink.

Fig. 1.31 Hybrid wind/photovoltaic system
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Fig. 1.32 Hybrid wind/photovoltaic system/diesel generators with battery storage

Fig. 1.33 Wind/photovoltaic system/diesel generators with battery storage under MATLAB/
Simulink
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Chapter 5
Design of Hybrid Renewable Energy
Systems

5.1 Introduction

The design of a PV, wind or hybrid system can be made based on the exact
knowledge of the load, the absorbed solar radiation, the estimates surface to be
installed (especially for PV panels) and the choice of other equipment (controllers,
inverters).

5.2 Design of Photovoltaic Systems

The effectiveness of any electric system depends on its design and its use. The
sizing should be based on meteorological data, solar radiation and the exact load
profile of consumers over long periods.

5.2.1 Determination of the Load Demand of Consumers

The exact knowledge of the customers load demand determines the size of
generators [1].

Denergy�total ¼
X

PLoad:t ð5:1Þ

where P is the load power and t is run time (hours) per day (Fig. 5.1).
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Application 1
For example, in this case, the daily energy is calculated as:

Denergy ¼ ð50WÞ�ð5 hÞþ ð150WÞ�ð3 hÞ þ ð100WÞ�ð2 hÞ
þ ð200WÞ�ð4 hÞ þ ð100WÞ�ð3 hÞ þ ð250WÞ
�ð5 hÞþ ð50WÞ�ð2 hÞ

Denergy ¼ 3350Wh=day

It can be also calculated by knowing the different appliances, their power and
their run time. For example, (see Table 5.1). In this example, it is listed some
appliances used in a house to supply them with renewable energy (solar, Wind,…).
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Fig. 5.1 Example of a time schedule diagram

Table 5.1 Results of Application 2

Appliances Number
(N)

Power
(W) P

Run time (h/day)t Daily energy (Wh/
day) D

Oven 1 500 1 500

Steam iron 1 850 1 850

Washing
machine

1 300 1 300

Television 1 200 6 200

Laptop
computer

1 30 6 180

Water
pump

1 400 2 800

Lights 2 12 5 120

Hair dryer 1 400 1 300

Total Daily energy (Wh/
day)D

3050
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The total daily energy will be calculated as:

Denergy total ¼ N � P � t ð5:2Þ

Application 2
For example, we want to supply a house with solar energy. The different electrical
devices are listed in Table 5.1.

5.2.2 Photovoltaic System Design

Once the load and absorbed solar radiation are known, the design of the PV system
can be carried out, including the estimation of the required PV panel’s area and the
selection of the other equipment (controllers, inverters,…).
Different methods have been used for designing PV systems. Each method

depends on specifically output parameters.

5.2.2.1 First Method

This method is based on the load demand. The actual daily solar energy is given as:

Pa�PV=day ¼ Pp �
Es�Worst
Es�STC

1�
X
losses

� �
ð5:3Þ

with: Pa�PV=day: actual daily power, Pp: peak power of panels, Es�Worst: value of the
monthly average irradiation of the worst month of irradiation, Es�STC the irradiation
value under STC conditions (standard test conditions),

P
losses ¼ 20%.

Hence, the PV panel number is:

Npv ¼
Denergy�total
Pa�PV=day

ð5:4Þ

The total peak power will be:

Pp�total ¼ Npv � Pp ð5:5Þ

Ant the total PV panel area is:

Apv�total ¼ Npv � Apv�u ð5:6Þ

with: Apv�u is the unit PV panel area (m ), Apv�tot the estimated total PV area (m ).
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Application 3

Denergy total ¼ 500Wh=day;Es�Worst ¼ 2:73kWh=m2 � day,Es�STC

¼ 1000W=m2;Apv�u ¼ 1:4m2:

The obtained results for three different photovoltaic powers can be summarized
in Table 5.2.

5.2.2.2 Second Method

This method is very simple but remains an estimated one. It is necessary to know
the need energy, the PV efficiency (material) and the value of the radiation of the
most unfavorable month of the site.

Ppv�totale�est ¼
Denergy total:ESTC

Eworst
ð5:7Þ

where hsun is the peak sun-hour can be written as:

hsun ¼
Eworst
ESTC

ð5:8Þ

Thus:

Ppv�totale�est ¼
Denergy total

hsun
ð5:9Þ

Application 4

Es�Worst ¼ 2:73kWh/m2.day;Es�STC ¼ 1000W=m2;Apv�u ¼ 1:4m2:

See (Table 5.3).

Table 5.2 Results of the Application 3

Denergy total

ðWh=dayÞ
PpðWpÞ Es�worstðkWh=m2=dayÞ Pa�PV=dayðWÞ Npv Ppv�totalðWÞ Apv�total

500 80 2.73 174.72 3 240 4.2

100 218.4 3 300 4.2

160 349.44 2 320 2.8
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5.2.2.3 Third Method

This method is based on the monthly average solar irradiance. The monthly energy
produced by the system per unit area is denoted E (kWh/m ) and Menergy;m is the
monthly energy required by the load (where m = 1, 2, …, 12 represents the month
of the year.). The minimum surface of the generator needed to ensure full (100%)
energy ðFenergyÞ is expressed by [1]:

Apv�tot ¼
Menergy;m
Epv;m

ð5:10Þ

The full energy can be given by:

Fenergy ¼ Epv � Apv�tot ð5:11Þ

The number of photovoltaic generators is calculated using the surface of the
system unit Apv�u taking the entire value:

Npv ¼
Apv�tot
Apv�u

ð5:12Þ

Application 5
An application is made with the different parameters: A = 1.4 m , η = 0.12,
P = 80 W (Table 5.4).

5.2.2.4 Method Based on Load Needs

The number of the series-connection PV modules is calculated by:

Npv�serial ¼
Fenergy

Eworst � gbatt � gel � gDC
ð5:13Þ

gbatt is the efficiency of the battery, gel is the electrical efficiency of the whole
installation (charge controller, inverter…), gDC is the distribution circuit.

Table 5.3 Results of the Application 4

Denergy totalWh=day PpðWpÞ hsunðhourÞ Ppv�totale�est Npv Ppv�totalðWÞ Apv�totalðm2Þ
500 80 2.73 183.1501832 3 240 4.2

100 183.1501832 2 200 2.8

160 109.8901099 1 160 1.4
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It can be also written as:

Npv�serial ¼
Fenergy

Eworst � KE
ð5:14Þ

where KE ¼ gbatt:gel:gDC is energy efficiency, it varies [0.6–0.75].
The maximum terminal voltage of the photovoltaic generator is estimated by:

Vpv�max ¼ 1:15:Npv�serial:Voc ð5:15Þ

(1.15 is a correction factor).
The PV parallel panels can be calculated by using Eq. 5.15, where V is DC

bus voltage

Npv�para ¼
Upv�max
VDC�bus

ð5:16Þ

Then, the total number of panels is deduced:

Npv ¼ Npv�para � Npv�serial ð5:17Þ

The total photovoltaic power to be installed will be:

Ppv�totale ¼ Npv � Pp ð5:18Þ

Application 6
The obtained results for three different photovoltaic powers can be summarized in
Table 5.5.

Table 5.4 Results of the application 5

Months G (kWh/m /day) M (Wh) F (Wh/m /day) A (m ) N

January 2.38 12,395.04 37,200.00 3.00 3.00

February 3.31 16,126.32 34,800.00 2.16 2.00

March 4.44 23,123.52 37,200.00 1.61 2.00

April 5.46 27,518.40 36,000.00 1.31 1.00

May 6.41 33,383.28 37,200.00 1.11 1.00

June 7.12 35,884.80 36,000.00 1.00 1.00

July 7.23 37,653.84 37,200.00 0.99 1.00

August 6.38 33,227.04 37,200.00 1.12 1.00

September 5.08 25,603.20 36,000.00 1.41 2.00

October 3.66 19,061.28 37,200.00 1.95 2.00

November 2.51 12,650.40 36,000.00 2.85 3.00

December 2.06 10,728.48 37,200.00 3.47 3.00
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5.3 Design of Wind System

5.3.1 Calculation of Wind Energy

The energy produced by the wind generator during a period time Dt is expressed by:

Ewind ¼ Pmec � Dt ð5:19Þ

where Dt period of time.

5.3.2 Determination of the Wind Generator Size

The total area of the wind turbine generators required to ensure full coverage
(100%) of the load Fenergy

� �
is expressed by:

Awind�total ¼
Denergy
Ewind

ð5:20Þ

with: EwindðkWh=m2Þ is the monthly energy produced by the wind system per unit
area and MenergyðkWhÞ represents the monthly energy required by the load.
The number of wind turbine generators is calculated according to the surface

area of the system unit by taking the entire value of the excess ratio.

Nwind ¼
Awind�total
Awind

ð5:21Þ

with Awind is the surface area of a wind turbine.

5.4 Sizing of Hybrid Photovoltaic/Wind System

The energy produced by a photovoltaic generator per unit area is estimated using
data from the global irradiance on an inclined plane, ambient temperature and the
data sheet for the used photovoltaic pannels. It is given by:

Table 5.5 Results of the Application 6

Fenergy (Wh/day) Pp (W ) Voc (V) Npv�serial Vpv�maxðVÞ Npv�para Npv
500 80 22.4 1 25.76 3 3

100 20.5 1 23.575 2 2

160 21.8 1 25.07 3 3
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Epv ¼ gpv � GApv ð5:22Þ

where: G is the solar radiation incident.
The power contained in the form of kinetic energy per unit area in the wind is

expressed by:

Pmec ¼
1
2
� qair � v3windCp � Awind ð5:23Þ

with: vwind is the speed wind, Cp the power coefficient, qair the air density and Awind
the wind area.

• Pre-sizing of photovoltaic and wind systems:

The monthly energy produced by the system per unit of area is denoted E
(kWh/m ) for photovoltaic energy and E (kWh/m ) for wind energy and E
Menergy represents the energy required by load every month (where m=1, 2, …, 12
represents the month of the year). Owe have:

Epv;m ¼
X

month m

DEpv ð5:24Þ

Ewind;m ¼
X

month m

DEwind ð5:25Þ

and

Fenergy ¼
X

monthm

Menergy ð5:26Þ

Pre-sizing is sometimes based on the worst month of the year.

EL;worst m ¼ Epv;worst m � ApvþEwind;worst m � Awind ð5:27Þ

The parameter f which is the fraction of load supplied by the photovoltaic energy
is introduced, (1 − f) being the fraction of load supplied by the wind energy. Then:

f = 1 indicates that the entire load is supplied by the photovoltaic source.
f = 0 indicates that the entire load is powered by the wind source.

The different PV and wind area can be calculated as:

Apv ¼
fEL;worstm

Epv;worstm
ð5:28Þ

Awind ¼
ð1� f ÞEL;worstm

Ewind;worst m
ð5:29Þ
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The pre-sizing is often also based on monthly annual average [2, 3]. The cal-
culation of the size of wind generator and photovoltaic (A and A ) is estab-
lished from the annual average values of each monthly contribution Epv andEwind

� �
.

The load is represented by the monthly annual average Fenergy:

Apv ¼ f � Fenergy
Epv

Awind ¼ ð1� f Þ � Fenergy
Ewind

ð5:30Þ

The number of photovoltaic and wind generator to consider is calculated
according to the area of the system unit taking the integer value of the ratio by
excess.

Npv ¼ ENT
Apv
Apv;u

� �

Nwind ¼ ENT
Awind
Awind;u

� � ð5:31Þ

Application 7
Table 5.6 shows the monthly energy production of the generators and the size
required to satisfy a constant daily consumption load of about 3050 Wh/day.

Table 5.6 Monthly energies produced by photovoltaic and wind generators

Months G (kWh/
m /day)

V
(m/s)

M
(kWh/day)

M
(kWh/day)

F
(kWh/m /
day)

A
(m )

A
(m )

January 2.38 5.22 11.56 14.97 153.45 6.70 4.87

February 3.31 5.32 11.80 13.90 143.55 6.14 4.91

March 4.44 5.3 13.51 14.32 153.45 5.73 5.09

April 5.46 5.34 13.34 12.75 148.5 5.62 5.53

May 6.41 4.52 13.68 11.35 153.45 5.66 6.42

June 7.12 4.33 13.71 12.27 148.5 5.46 5.75

July 7.23 4.46 14.48 13.28 153.45 5.35 5.49

August 6.38 4.36 14.65 13.89 153.45 5.28 5.25

September 5.08 4.17 13.91 11.25 148.5 5.39 6.27

October 3.66 4.48 13.13 12.29 153.45 5.90 5.93

November 2.51 5.15 11.31 12.95 148.5 6.63 5.45

December 2.06 5.33 10.91 17.88 153.45 7.10 4.08

Monthly
average

4.67 4.83 13.00 13.42 150.975
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After having calculated the total required surfaces of the two generators (pho-
tovoltaic, wind), we will determine the number to install according to the fraction of
the load (f) taken with an interval of [0–1] (Table 5.7).
The obtained results can be represented in Fig. 5.2.

5.5 Sizing of Hybrid Photovoltaic/Wind System/Batteries

The global system includes a PG generator, a charge controller, a battery bank and a
DC/AC converter supplying a load profile. These major ¡components should be
selected to the location site and the application. Figure 5.3 shows a diagram of a
typical standalone PV system powering AC loads [5–32].

5.5.1 Battery Design

Battery capacity is the energy per day capable of charging a battery. The calculation
can be written as:

CbattðA � hÞ ¼
Denergy � Naut

Vbatt � DOD � gbatt
ð5:32Þ

where:Vbatt is the battery voltage, DOD is the depth of discharge, gbatt the efficiency
battery, Naut is the days of autonomy and Denergy is the total energy required.
The number of batteries to be used is determined from the capacity of a battery

unit Cbatt;u is given by:

Table 5.7 Sizing according to the annual monthly average

f 1 − f A (m ) N A (m ) N F

0 1.00 0.00 0 9.42 3 126.4164

0.1 0.90 1.29 2 9.42 3 143.1864

0.2 0.80 1.94 3 9.42 3 151.6364

0.3 0.70 3.23 5 9.42 3 168.4064

0.4 0.60 3.88 6 6.28 2 134.7176

0.5 0.50 5.17 8 6.28 2 151.4876

0.6 0.40 5.81 9 6.28 2 159.8076

0.7 0.30 7.11 11 3.14 1 134.5688

0.8 0.20 7.75 12 3.14 1 142.8888

0.9 0.10 8.40 13 3.14 1 151.3388

1 0.00 9.69 15 0.00 0
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Fig. 5.2 Obtained results of PV/wind design. a Solar radiation and wind speeds of the location.
b Average daily energy of PV and wind generators. c Full energy with PV and wind turbine
energies. d Combinations of number of PV and wind turbines
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Nbatt ¼
Cbatt;min
Cbatt;u

� �
ð5:33Þ

Application 8
We make an application for two different daily energies (300 Wh/day and
3030 Wh/day). (Table 5.8).

5.5.2 DC/AC Converter Design

5.6 Design of Hybrid Photovoltaic/Wind System/Fuel Cells

In this case, PV and wind turbine generators are considered as a main source and
fuel cells as a secondary one.

PRen ¼ PPVþPwind ð5:34Þ

Fig. 5.3 Diagram of a typical standalone PV system powering AC loads

Table 5.8 Results of Application 9

DenergyðWh=dayÞ VbattðVÞ gbatt DOD Nautðh=dayÞ CbattðAhÞ Cbatt;uðAhÞ Nbatt
300 12 0.85 0.6 2 98.04 90 1

3030 990.1 11
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PLoad ¼ PRenþPFC ð5:35Þ

where: PRen is the power produced by PV and wind systems and PFC is the power
produced by fuel cell system.
The design of PV panels and wind turbine has been explained in Sect. 5.4. For

fuel cells, the sizing methodology is as follows: Stack design consists of calculating
the number and area of cells that make up a fuel cell stack. This sizing must take
into account the nominal power of the cell and the current density desired to obtain
by adding 20% of the power that will be consumed by the cell auxiliaries.

5.6.1 Power Calculation

PFC�stack ¼ Pinv:ð1þ 0:2Þ ð5:36Þ

where Pinv is the input inverter power.

5.6.2 Cell Number and Cell Surface

The maximum electrical power of the stack is calculated by the following rela-
tionship [4]:

PFC�stack ¼ NFC � EFC � j � AFC ð5:37Þ

with: PFC�stack is the maximum electrical power of the stack (W), NFC is the number
of cells in the stack, EFC is the voltage per cell (V), j is the current density (A/m )
and AFC is the active cell area (m ).
The voltage of the stack depends on the cells number:

Ustack ¼ NFC � EFC ð5:38Þ

To determine the area of the stack, the FC current must first be calculated:

Istack ¼
Pstack
Ustack

ð5:39Þ

AFC ¼ Istack=j ð5:40Þ
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It is interesting to have the highest voltage U and, therefore, the lowest
current I because it limits losses in the cell.

Application 9
An example is made to follow the sizing method (Table 5.9).

5.7 Application to Water Pumping System

Depending on the size of pump, three-phase induction machines or single-phase
induction machines can be used. In this work, induction motor associated with a
centrifugal pump has been used. The energy consumed by the pump depends on the
desired water flow, which represents the energy that must be provided by the two
generators (PV and wind).
Sizing of the different components of the system supplying a small village with

water has been made. The specifications must satisfy the following conditions:

– the volume of water tank pumped per day about 100 m .
– the water tank is situated at 10 m above the surface level.
– a nominal flow rate of 34 m /h=0.0094 m /s.

The different results can be summarized in Table 5.10.
As the height increases, the powers increase, which will improve efficiency

(Fig. 5.4).

Table 5.9 Results of application 8

VDC�busðVÞ EFCðVÞ jðA=cm2Þ UstackðVÞ NFC PinvðWÞ PFC�stackðWÞ IstackðAÞ AFCðcm2Þ
450 1 1 225 376 1500 1800 8 13.33

Table 5.10 Moto-pump group sizing

Symbols Equations Results

Hydraulic power PHyd PHyd ¼ qwater � g � h � qv 922.14 W

Mechanical power required by the pump P Pmec ¼ PHyd
gpump

2049.20 W

Electrical power required for the motor to
operate P

Pelec ¼ Pmec
gmotor

2561.50 W

Input inverter power Pinv Pinv ¼ Pelec
ginv

2696.32 W

Pumping time required to satisfy
the water needs spump

spump ¼ Vtank
qv

2.94 h

Daily electrical energy required E Denergy ¼ spump � Pinv 7930.34 Wh/
day
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5.8 Optimization of Power System Using HOMER Pro
Software

5.8.1 Introduction to HOMER Pro Software

Hybrid optimization model for electric renewable (HOMER) software performs
economic analysis on hybrid power systems. Homer is a simulation and opti-
mization software for multi-source (hybrid) power generation systems, with dif-
ferent components: (PV, wind, grid, storage, diesel…). It is dedicated directly to the
simulation of on-grid and off-grid systems. The software allows the simulation of a
system based on inputs (solar, wind, diesel, etc.) according to energy consumption.
Subsequently, it is possible to analyze several different configurations for the same
system in order to obtain a cost-effective system. The software simulates all the
required configurations and gives the best solution, the cheapest solution, among
them. Then, it is finally possible to perform sensitivity analyses to determine if the
solution found is the best even if there are some changes in the various parameters
entered (variation in the cost of the technology, variation in the deposit data, etc.). It
is, therefore, possible to perform many analyses with many different configurations
in less than a few minutes of simulation.
The software allows simulations to be performed with different energy pro-

duction systems:

– photovoltaic solar panels,
– wind turbines,
– hydro power,
– biomass,
– generators (diesel, gasoline, biogas, alternative and customized fuels),
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– power grid,
– fuel cells.

HOMER also offers a wide range of energy storage or recovery systems:

– battery bank,
– flywheels,
– flow batteries,
– hydrogen.

You can also input various types of energy needs:

– daily consumption profiles with seasonal variations,
– delayed charging for water pumping or refrigeration,
– thermal load,
– energy efficiency measures.

HOMER can, therefore, simulate a wide range of different systems in addition to
all possible combinations of hybrid systems (Fig. 5.5).

Fig. 5.5 Example hybrid combinations systems in Homer Pro. a PV/batteries. b PV/wind/
batteries. c PV/wind/batteries/HPS. d PV/wind/HPS/FEES. e PV/wind/batteries on grid. f PV/
wind/batteries/batteries on grid
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5.8.2 Application to PV/Wind System with Battery Storage

The main purpose of this application is to optimize the size of PV/wind/wind/
battery hybrid system components, minimize excess production and perform a cost
analysis based on life-cycle cost. Solar radiation and wind speed data were collected
for Bejaia area in Algeria (Latitude 36°45.3522′ N, Longitude 5°5.0598′ E) using

Fig. 5.6 Bejaia location in Algeria (Latitude 36°45.3522′ N, Longitude 5°5.0598′ E) with
HOMER software License Agreement
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Fig. 5.7 Daily radiation and clearness index at Bejaia location (downloaded at 18/08/2019
18:58:26 from HOMER software License Agreement)
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the function of “Get Data via Internet” in the HOMER software (the NASA
Atmospheric Data Center), (see Fig. 5.6).
Figure 5.7 shows monthly average daily solar radiation with the clearness

radiation at Bejaia site.
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The average wind speeds are as follows in Fig. 5.8. It varies from 4.170 to
5.33 (m/s). The annual average is about 4.83 m/s.

Fig. 5.10 Scaled data monthly average

Fig. 5.11 Daily average load for a complete year
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In this application, load data were collected for a residential house located in
Bejaia region. The measured annual consumption is estimated as 1.2 kWh/day
(Fig. 5.9). The peak load decides the size of system components.
The scaled data monthly average is as Fig. 5.10.
The daily average load for a complete year is (Fig. 5.11).
The hourly average load variations in a year for all months can be represented as

(Fig. 5.12).
The main components of the developed hybrid system under Homer are shown

in Fig. 5.13.
Once the technical parameters of each component are chosen, the cost of each

component is entered by entering the initial price, the maintenance price and their
estimated lifetime, in order to allow the software to determine the overall price of
the installation and to optimize for the lowest net present cost (NPC). HOMER
calculates the net present cost of each component and of the hybrid system as a
whole. The results were computed in different simulations to show the
technico-economic feasibility of the studied hybrid system.

Fig. 5.12 Hourly average load variations in a year for all months

Fig. 5.13 Block diagram of
PV/wind turbine/battery
hybrid system
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5.9 Conclusions

The most presented methods are well-known but still used in the design of system
because it is the most important step in a project. This application using Homer
software is based on economical performances which depend of course on real
market prices and exact sizing of each component of a studied system.
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